Analysis of Leaf Volatiles of Crabapple (Malus sp.) Individuals in Different Aphids’ Resistance
نویسندگان
چکیده
The aim of this experiment was to analyze the leaf volatiles of crabapple (Malus sp.) individuals at different aphid’s resistance, to ascertain the particular ingredients which has lure or aversion effects on aphid, and to provide reference for finding out a simple method to control effectively aphids. Volatiles of leaves from twenty-one different crabapple individuals were evaluated with the method of head space-solid phase micro-extraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Volatiles profiles of them were then compared. There are one hundred eighty-six kinds of volatiles were detected with varied contents found in different individuals. And all plants contain eight kinds of common components: 3-Hexen-1-ol, acetate, (Z)-, 4-Hexen-1-ol, (Z)-, n-Decanal, n-Tetradecane, .alpha.-Farnesene, Diethyl Phthalate, Oxime-, methoxy-phenyland Dibenzofuran-, wherein the relative content of higher have 3-Hexen-1-ol, acetate, (Z)and 4-Hexen1-ol, (Z)-. Specific volatile substances in high resistance plants contain 3-Hexenal, (Z)and 2-Hexenal, (E)-. Leaf volatiles differ in twenty-one crabapple individuals. High resistance plants specific volatile substances contains 3-Hexenal, (Z)-, 2-Hexenal, (E)and other small molecular volatile substances, and no-resistance plants all have .beta.-Farnesene.
منابع مشابه
The Balance of Expression of Dihydroflavonol 4-reductase and Flavonol Synthase Regulates Flavonoid Biosynthesis and Red Foliage Coloration in Crabapples
Red leaf color is an attractive trait of Malus families, including crabapple (Malus spp.); however, little is known about the molecular mechanisms that regulate the coloration. Dihydroflavonols are intermediates in the production of both colored anthocyanins and colorless flavonols, and this current study focused on the gene expression balance involved in the relative accumulation of these comp...
متن کاملPromotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios
Flavonoids are secondary metabolites that play important roles in plant physiology. Despite numerous studies examined the effects of available carbon (C) or nitrogen (N) on flavonoid biosynthesis, the mechanism of C/N interactive effects on flavonoid metabolism is still unclear. In this study, we analyzed the composition of flavonoids and the expression levels of flavonoid-related genes in leav...
متن کاملMcMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple
The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be m...
متن کاملA Malus Crabapple Chalcone Synthase Gene, McCHS, Regulates Red Petal Color and Flavonoid Biosynthesis
Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. T...
متن کاملBehavioral Evidence for Local Reduction of Aphid-Induced Resistance
Twenty-five aphids of three different species, Brevicoryne brassicae L, Myzus persicae Schulzer, and Rhopalosiphum padi L(Hemiptera: Aphididae) were each allowed to infest leaves of a young plant of their respective host plant species for 4 days, except that the oldest expanded leaf (the 'systemic' leaf) was kept free of aphids. Each preinfested plant thus had two types of leaves, local leaves ...
متن کامل